

Mark Scheme (Results)

June 2024

Pearson Edexcel International Advanced Subsidiary Level In Physics (WPH13) Paper 01 Practical Skills in Physics I

Question Number	Answer	Mark
1(a)(i)	The stand may topple over (1)	
	Clamp (the base of the stand) to the bench Or Place a heavy mass on the (base of the) stand	
	Or Turn the base (of the stand) round (by 180°) (1)	
	The (rubber) band may hit the student in the eye/face Or The (rubber) band may damage the eye (1)	
	The (tuoder) band may damage the eye	
	Wear eye protection (1)	4
1(a)(ii)	Add masses (gradually) until the (rubber) band breaks (1)	
	Calculate the force using $F = mg$ Accept W (1)	2
1(b)	(Repeating the measurement) reduces (the effect of) <u>random error</u> (1)	
	(Caused by) variations in the temperature of the rubber bands (1)	2
	MP1 do not accept systematic error	
	Total for question 1	8

Question Number	Answer		Mark
2(a)(i)	Height (of the initial position) of the ball Or The initial velocity of the ball Accept ball is stationary when released	(1)	1
2(a)(ii)	Height affects the gravitational potential energy of the ball Or Height affects how long the ball accelerates for Or Initial velocity affects the initial kinetic energy of the ball	(1)	
	(So) The (impact) velocity of the ball may vary Or The (impact) kinetic energy may vary	(1)	2
	MP1 must be linked to the control variable stated		
2(b)	Any THREE from		
	The values (of x and θ) are not recorded to consistent decimal places	(1)	
	There is no evidence of repeats	(1)	
	There are not enough sets of data (to draw a reliable graph)	(1)	
	The reading of x at 20.5° does not follow the trend	(1)	3
2(c)	EITHER		
	Use a camera to record the motion	(1)	
	Which can be viewed in slow motion (to find the exact point where the ball landed)	(1)	
	OR		
	Place a tray of sand on the bench for the ball to land in	(1)	
	So that the ball remains stationary when it lands Or so the ball leaves an indentation where it lands	(1)	2
	Total for question 2		8

Question Number	Answer					
3(a)	Clamp the metre rule in position Or Ensure the metre rule is vertical using a set square [allow spirit level] Or Place metre rule close to the tube	(1)				
	Check the zero of the metre rule is level with the bottom of the transducer Or Check the zero of the metre rule is level with the surface of the water Or Measure to the surface of the water and to the bottom of the transducer and subtract the values (1)					
	Accept any valid method to determine s View (the metre rule) perpendicularly Or					
2(b)	Use a set square to take the measurement from the metre rule	(1)				
3(b)	Calculates time $t =$ number of divisions \times time per division Use of $v = \frac{s}{t}$ Do not accept use of $v = f\lambda$ Uses $2 \times s$	(1)				
	Or Uses $\frac{1}{2} \times t$ $v = 331 \text{ (m s}^{-1})$ Bald answer scores 0	(1) (1)	4			
	Example of calculation $t = 6 \text{ divisions} \times 0.5 \text{ ms per division} = 3 \text{ ms}$ $v = \frac{s}{t} = \frac{2 \times 0.497 \text{ m}}{3 \times 10^{-3} \text{ s}} = 331.3 \text{ m s}^{-1}$					
3(c)(i)	Calculation of mean $Mean v = 341 \text{ m s}^{-1}$ 3 sig fig only	(1) (1)	2			
	Example of calculation Mean value of $v = \frac{(335 + 347 + 339 + 342) \text{ m s}^{-1}}{4} = \frac{1363 \text{ m s}^{-1}}{4} = 340.8 = 341 \text{ m s}^{-1}$					
3(c)(ii)	Calculates half range for uncertainty Accept furthest from the mean Correct value of percentage uncertainty using calculated mean (e.c.f. 3(c)(i))	(1) (1)	2			
	Example of calculation Uncertainty = half range = $\frac{(347 - 335) \text{ m s}^{-1}}{2}$ = 6 m s ⁻¹ Percentage uncertainty = $\frac{6 \text{ m s}^{-1}}{341 \text{ m s}^{-1}} \times 100 = 1.8\%$					

3(d)	EITHER		
	Upper limit = $1502 \text{ (m s}^{-1}\text{)}$	(1)	
	Conclusion consistent with comparing calculated limit and given value	(1)	
	Example of calculation		
	Upper limit = $1444 \text{ m s}^{-1} \times 1.04 = 1502 \text{ (m s}^{-1})$		
	The upper limit is above 1481 m s ⁻¹ so the student's value is consistent		
	OR		
	Percentage difference = 2.5 %	(1)	
	Conclusion consistent with comparing calculated percentage difference with 4%	(1)	2
	Total for question 3		13

Question Number	Answer					
4(a)(i)	Calculates percentage uncertainty = half resolution / measurement × 100%	(1)				
	Percentage uncertainty = 2 % Accept 1.9 %	(1)	2			
	Example of calculation					
	Percentage uncertainty = $\frac{0.005 \text{ mm}}{0.27 \text{ mm}} \times 100 = 1.85 \% = 2 \%$					
4(a)(ii)	EITHER					
	Check (and correct) for zero error	(1)				
	To eliminate systematic error	(1)				
	MP2 dependent on MP1					
	OR					
	Use the ratchet (to prevent overtightening)	(1)				
	To reduce (the effect of) <u>random error</u>	(1)	2			
	MP2 dependent on MP1					
4(b)	The fixed resistor limits the (maximum) current in the circuit	(1)				
	So the wire/circuit does not overheat					
	Or so there is not a short circuit Or so the ammeter/battery is not damaged	(1)	2			
	of so the animeter/pattery is not damaged	(1)	L			

4(c)(i)	(i) $\left(\frac{R}{L} = -kL + \frac{\rho}{A}\right)$ compares to $y = mx + c$ where $\frac{\rho}{A}$ is the y-intercept					
	So ρ can be calcula	ted from the y-interce	pt multiplied b	by A.	(1)	2
4(c)(ii)	Correct values of $\frac{R}{L}$		units not requ	aired in table heading	(1) (1)	2
	Values consistent to	o 3 sig figs				
	<i>L /</i> r	n I/A	V/V	$\frac{R}{L}/\Omega \text{ m}^{-1}$		
	0.10	0 0.720	1.40	19.4		
	0.20	0 0.390	1.39	17.8		
	0.30	0.290	1.42	16.3		
	0.40	0.250	1.48	14.8		
	0.50	0.220	1.47	13.4		
	0.60	0.210	1.47	11.7		
4(c)(iii)	Axis labels: y as $\frac{R}{L}$	Ω m ⁻¹ and x as L / m			(1)	
	Sensible scales				(1)	
	Accurate plotting				(2)	
	Line of best fit				(1)	5
	21					
	20					
	19					
	18	<				
	17					
	7 16	×				
	T- 16 G G 7/2/15					
	7/2 15	×				
	14					
	13	×				
	13					
	12		×			
	11					
	10					
	0 0.1 0	.2 0.3 0.4 0.5	0.6 0.7			
		<i>L</i> / m				

	y -intercept = 20.9 Ω m ⁻¹		
	Example of calculation		
	Correct value of ρ given to 2 or 3 s.f. with units Ω m (e.c.f. 4(c)(iv))	(1)	3
	Uses $A = \frac{\pi d^2}{4}$	(1)	
4(c)(v)	y-intercept determined from graph Or Calculation of y-intercept using gradient and data point from best fit line	(1)	
	$k = -\text{gradient} = -\frac{19.4 - 13.3}{0.1 - 0.5} = 15.3$		
	Example of calculation 19.4 – 13.3 15.2		
	Energy of coloniation		
	k given to 2 or 3 s.f., positive, units Ω m ⁻²	(1)	3
	k = in range (-)14.4 to (-)15.6	(1)	
4(c)(iv)	Calculates gradient using large triangle	(1)	

_